天津科技大学分子生物学复习总结(9)
本站小编 半岛在线注册/2015-09-20
基因芯片还可用于进行基因诊断。先建立正常人特定组织、器官的基因芯片,给出标准杂交信号图,用可疑病人的cDNA做探针与之杂交,确定哪些基因的表达受抑制或激活。
课外作业了解基因克隆方法和基因功能研究方法。
第六章 基因的表达与调控(初步了解)(上)原核基因表达调控模式
引 言:自然选择倾向于保留高效率的生命过程。在每30分钟增殖一次的109细菌群体中,若一个细菌变成29.5分钟增殖,经过80天的连续生长后,这个群体中的99.9%都将具有29.5分钟增殖一倍的生长速度。
原核生物细胞的基因和蛋白质种类较少,如大肠杆菌基因组约为4.20×106bp共有4 288个开放读码框(表6-1)。据估计,一个细胞中总共含有107个蛋白质分子。
每个大肠杆菌细胞有约15 000个核糖体,50种核糖体蛋白、糖酵解体系的酶、DNA聚合酶、RNA聚合酶等都是代谢过程中必需的,其合成速率不受环境变化或代谢状态的影响,这一类蛋白质被称为永久型(constitutive)合成的蛋白质。
另一类则被称为适应型或调节型(adaptive or regulated),因为这类蛋白质的合成速率明显地受环境的影响而改变。如大肠杆菌细胞中一般只有15个β-半乳糖苷酶,但若将细胞培养在只含乳糖的培养基中,每细胞中这个酶的量可高达几万个分子。
6. 1 原核基因表达调控总论
随着生物个体的发育,DNA分子能有序地将其所承载的遗传信息,通过密码子-反密码子系统转变成蛋白质,执行各种生理生化功能。科学家把从DNA到蛋白质的过程称为基因表达(gene expression),对这个过程的调节就称为基因表达调控(gene regulation或gene control)。
基因表达调控主要表现在以下二方面:
转录水平上的调控(transcriptional regulation);
转录后水平上的调控(post-transcriptional regulation),包括:(1)mRNA加工成熟水平调控(differential processing of RNA transcrpt);(2)翻译水平调控(differential translation of mRNA)。
细菌的转录与翻译过程几乎发生在同一时间间隔内,转录与翻译相耦联(coupled transcription and translation)。真核生物中,转录产物(primary transcript)只有从核内运转到核外,才能被核糖体翻译成蛋白质。
原核生物的基因调控主要是转录调控,包括负转录调控和正转录调控。在负转录调控系统中,调节基因的产物是阻遏蛋白(repressor),阻止结构基因转录。根据其作用特征又分为负控诱导和负控阻遏二大类。
在负控诱导系统中,阻遏蛋白不与效应物(诱导物)结合时,结构基因不转录;
在负控阻遏系统中,阻遏蛋白与效应物结合时,结构基因不转录。阻遏蛋白作用于操纵区。
在正转录调控系统中,调节基因的产物是激活蛋白(activator)。根据其作用特性分为正控诱导系统和正控阻遏系统。
在正控诱导系统中,效应物分子(诱导物)的存在使激活蛋白处于活性状态;在正控阻遏系统中,效应物分子的存在使激活蛋白处于非活性状态(图6-3,表6-2)。
σ因子在结构上具有同源性,所以统称σ70家族,含有4个保守区(图6-4),其中第2个和第4个保守区参与结合启动区DNA,第2个保守区的另一部分还参与双链DNA解开成单链的过程。
σ54因子识别并与DNA上的-24和-12区相结合(图6-5)。
σ70启动子只有在核心酶结合到DNA链上之后才能与启动子区相结合,而σ54则类似于真核生物的TATA区结合蛋白(TBP),可以在无核心酶时独立结合到启动子上。
6. 2 乳糖操纵子与负控诱导系统
大肠杆菌乳糖操纵子(lactose operon)包括3个结构基因:Z、Y和A,以及启动子、控制子和阻遏子等。转录的调控是在启动区和操纵区进行的。
3个结构基因各决定一种酶:Z编码-半乳糖苷酶;Y编码-半乳糖苷透过酶;A编码-半乳糖苷乙酰基转移酶。
β-半乳糖苷酶是一种β-半乳糖苷键的专一性酶,除能将乳糖水解成葡萄糖和半乳糖外,还能水解其他β-半乳糖苷(如苯基半乳糖苷)。
β-半乳糖苷透过酶的作用是使外界的β-半乳糖苷透过大肠杆菌细胞壁和原生质膜进入细胞内。
β-半乳糖苷乙酰基转移酶的作用是把乙酰辅酶A上的乙酰基转移到-半乳糖苷上,形成乙酰半乳糖。
6. 2. 1 酶的诱导—lac体系受调控的证据
一般情况下,lac+基因型大肠杆菌细胞内β-半乳糖苷酶和透过酶的浓度很低,每个细胞只有1~2个酶分子。但是,在乳糖培养基上酶的浓度很快达到细胞总蛋白量的6%或7%,超过105个酶分子/细胞。
在无葡萄糖有乳糖的培养基中,lac+细菌中将同时合成β-半乳糖苷酶和透过酶。
用32P标记的mRNA与模板DNA进行定量分子杂交,表明培养基中加入乳糖1~2分钟后,编码β-半乳糖苷酶和透过酶的lacmRNA量就迅速增加,去掉乳糖后,lac mRNA量立即下降。
实验室常用两种乳糖类似物—异丙基巯基半乳糖苷(IPTG)和巯甲基半乳糖苷(TMG),在酶活性分析中常用发色底物O-硝基半乳糖苷(ONPG)。因为它们都不是半乳糖苷酶的底物,所以又称为安慰性诱导物(gratuitous inducer)。
用35S标记大肠杆菌细胞(培养基中没有半乳糖),将这些带有放射性的细菌转移到不含35S的培养基中,加入诱导物后β-半乳糖苷酶便开始合成。分离纯化β-半乳糖苷酶,发现这种酶无35S标记,说明这种酶是加入诱导物后新合成的。
6. 2. 2 操纵子模型及其影响因子
Jacob和Monod认为诱导酶(他们当时称为适应酶)现象是个基因调控问题,而且可以用实验方法进行研究,他们通过大量实验及分析,建立了现在已经被人们广泛接受的乳糖操纵子的控制模型。
A.Z、Y、A基因产物由同一条多顺反子mRNA分子所编码。
B. 该mRNA分子的启动区(P)位于阻遏基因(I)与操纵区(O)之间,不能单独起始半乳糖苷酶和透过酶基因的高效表达。
C. 操纵区是DNA上的一小段序列(仅为26bp),是阻遏物的结合位点。
D. 当阻遏物与操纵区相结合时,lacmRNA的转录起始受到抑制。
E. 诱导物通过与阻遏物结合,改变其三维构象,使之不能与操纵区相结合,诱发lacmRNA的合成。
阻遏物lacI基因产物及功能
lac操纵子阻遏物mRNA是由弱启动子控制下永久型合成的,该阻遏蛋白有4个相同的亚基,每个亚基均含有347个氨基酸残基,并能与1分子IPTG结合,每个细胞中有5~10个阻遏物分子。
β-半乳糖苷酶在乳糖代谢中的作用是把前者分解成葡萄糖及半乳糖。如果将葡萄糖和乳糖同时加入培养基中,大肠杆菌在耗尽外源葡萄糖之前不会诱发lac操纵子(图6-11)。
某大肠杆菌突变体,它不能将葡萄糖-6-磷酸转化为下一步代谢中间物,该细菌的lac基因能在葡萄糖存在时被诱导合成。所以,不是葡萄糖而是它的某些降解产物抑制lacmRNA的合成,科学上把葡萄糖的这种效应称之为代谢物阻遏效应(cataboliterepression)。
cAMP与代谢物激活蛋白
cAMP是在腺苷酸环化酶的作用下由ATP转变而来的,在真核生物的激素调节过程中也起着十分重要的作用。
将细菌放在含葡萄糖的培养基中培养,cAMP的浓度就低;如果培养基中只有甘油或乳糖等不进行糖酵解途径的碳源,cAMP的浓度就会很高。
大肠杆菌中的代谢物激活蛋白,由Crp基因编码,能与cAMP形成复合物。CRP和cAMP都是合成lacmRNA所必需的,cAMP-CRP是一个不同于阻遏物的正调控因子,而lac操纵子的功能是在这两个相互独立的调控体系作用下实现的
cAMP-CRP复合物与启动子区的结合是lacmRNA合成起始所必需的,因为这个复合物结合于启动子上游,能使DNA双螺旋发生弯曲,有利于形成稳定的开放型启动子-RNA聚合酶结构。阻遏物则是一个抗解链蛋白,阻止形成开放结构,从而抑制RNA聚合酶的功能。
6. 2. 3 lac操纵子的调控区域—P、O区
P区(即启动子区)一般是从I基因结束到mRNA转录起始位点下游5-10bp,而O区(即阻遏物结合区)位于-7~+28位,该区的碱基序列有对称性,其对称轴在+11位碱基对。
6. 2. 4 lac操纵子中的其他问题
1)lac基因产物数量上的比较
在完全被诱导的细胞中,β-半乳糖苷酶、透过酶及乙酰基转移酶的拷贝数比例为1:0.5:0.2,这个比例在一定程度上反映了以β-半乳糖苷作为唯一碳源时细胞的需要。不同的酶在数量上的差异是由于在翻译水平上受到调节所致。
2)操纵子的融合与基因工程
pur操纵子在染色体上位于lac操纵子沿转录方向的下游,中间只隔了一个控制细胞对T6噬菌体敏感性的tsx基因。pur操纵子被“嫁接”到lac启动子上,形成融合基因。因为lac启动子是一个很强的启动子,通过它可以使较弱启动子的转录增强。
6. 3 色氨酸操纵子与负控阻遏系统
trp体系参与生物合成,它不受葡萄糖或cAMP-CRP的调控。色氨酸的合成主要分5步完成,有7个基因参与整个合成过程(图6-17)。
trpE和trpG编码邻氨基苯甲酸合酶,trpD编码邻氨基苯甲酸磷酸核糖转移酶,trpF编码异构酶,trpC编码吲哚甘油磷酸合酶,trpA和trpB则分别编码色氨酸合酶的α和β亚基。
在许多细菌中,trpE和trpG,trpC和trpB分别融合成一个基因,产生具有双重功能的蛋白质。
trpE基因是第一个被翻译的基因,与trpE紧邻的是启动子区和操纵区。前导区和弱化子区分别定名为trpL和trpa。
trp操纵子中产生阻遏物的基因是trpR,该基因距trp基因簇很远。后者位于大肠杆菌染色体图上25分钟处,而前者则位于90分钟处。在位于65分钟处还有一个trpS(色氨酸tRNA合成酶),它与携带有色氨酸的tRNATrp共同参与trp操纵子的调控作用。
6. 3. 1 trp操纵子的阻遏系统
trpR基因突变常引起trpmRNA的永久型合成,该基因产物因此被称为辅阻遏蛋白(aporepressor)。除非培养基中有色氨酸,否则这个辅阻遏蛋白不会与操纵区结合。辅阻遏蛋白与色氨酸相结合形成有活性的阻遏物,与操纵区结合并关闭trpmRNA转录。
效应物分子色氨酸是trp操纵子所编码的生物合成途径的末端终产物。
当培养基中色氨酸含量较高时,它与游离的辅阻遏蛋白相结合,并使之与操纵区DNA紧密结合;当培养基中色氨酸供应不足时,辅阻遏物失去色氨酸并从操纵区上解离,trp操纵子去阻遏。
6. 3. 2 弱化子与前导肽
1)弱化子:在trpmRNA 5’端有一个长162bp的mRNA片段被称为前导区,其中123~150位碱基序列如果缺失,trp基因表达可提高6-10倍。mRNA合成起始以后,除非培养基中完全没有色氨酸,转录总是在这个区域终止,产生一个仅有140个核苷酸的RNA分子,终止trp基因转录。这个区域被称为弱化子,该区mRNA可通过自我配对形成茎-环结构。
2)前导肽:分析前导序列发现,它包括起始密码子AUG和终止密码子UGA,能产生一个含有14个氨基酸的多肽,这个假设的多肽被称为前导肽。
在前导序列的第10和第11位上有相邻的两个色氨酸密码子。组氨酸操纵子含有7个相邻的组氨酸密码子,苯丙氨酸操纵子也有7个苯丙氨酸密码子,这些密码子参与了操纵子中的转录弱化机制。
3)mRNA前导区的序列分析
trp前导区的碱基序列已经全部测定,引人注目的是其中4个分别以1、2、3和4表示的片段能以两种不同的方式进行碱基配对,有时以1-2和3-4配对,有时只以2-3方式互补配对。
4)转录弱化作用
培养基中色氨酸浓度低,负载有色氨酸的tRNATrp就少,翻译通过两个相邻色氨酸密码子的速度就慢,当4区被转录完成时,核糖体才进行到1区(或停留在两个相邻的trp密码子处),前导区2-3配对,不形成3-4配对的终止结构,转录继续进行。
培养基中色氨酸浓度高,核糖体顺利通过两个相邻的色氨酸密码子,在4区被转录之前就到达2区,3-4区自由配对形成茎-环状终止子结构,转录停止。所以,弱化子对RNA聚合酶的影响依赖于前导肽翻译中核糖体所处的位置。
6. 4 其他操纵子
6. 4. 1 半乳糖操纵子
6. 4. 2 阿拉伯糖操纵子
6. 4. 3 组氨酸操纵子
6. 4. 4 阻遏蛋白LexA的降解与细菌中的SOS应答
6. 4. 5 二组分调控系统和信号转导
最简单的细胞信号系统称为二组分系统(two-component systems),由二种不同的蛋白质组成:即位于细胞质膜上的传感蛋白(sensor protein)及位于细胞质中的应答调节蛋白(response regulator protein)
相关话题/分子生物学
2015年研究生考试 东北大学(初试) 分子生物学 回忆版
2015年研究生考试 东北大学(初试) 分子生物学 回忆版 分子:题型有名词解释、简答、问答 一、名词解释(5分10个): 编码链,SNP,细菌转化,翻译,癌症,DNA聚合酶,冈崎片段,顺反子,复制叉,基因, 二、简答(7分10个): 1、原位杂交原理, 2、蛋白质合成的过程, 3、半保留复制的过程, 4、 ...专业课半岛在线注册资料 本站小编 半岛在线注册 2015-09-05辽宁医学院分子生物学复习题
2011分子生物学复习题 一、选择题: 1)、单项选择题 1、证明DNA是遗传物质的两个关键性实验是:肺炎链球菌在老鼠体内的毒性和T2噬菌体感染大肠杆菌。这两个实验中主要的论点证据是: (a)从被感染的生物体内重新分离得到DNA,作为疾病的致病剂 (b)DNA突变导致毒性丧失 (c)生物体吸收的外源DNA(而并 ...专业课半岛在线注册资料 本站小编 半岛在线注册 2015-07-30山东师范大学分子生物学期末考试重点整理
1.核小体结构? 2.核糖体活性位点? 3.DNA二级结构? 4.原核生物与真核生物基因组的差异 5.维持DNA双螺旋稳定性因素? 6.原核生物中的DNA聚合酶(大肠杆菌) 7.真核生物的RNA聚合酶Ⅱ的启动子结构特点? 8.转座发生的机制、类型、遗传学效应 9.证明遗传物质是核酸的实验依据是什么? 10.设计实验证明DNA的半保留复制 ...专业课半岛在线注册资料 本站小编 半岛在线注册 2015-07-192015山东师范大学分子生物学期末考试回忆
山东师范大学 2015年分子生物学试题回忆 一、判断(201) 二、名词解释(64) 滚环复制 同工tRNA 弱化子 基因芯片 TBP 增强子 三、简答(48) 1、真核与原核基因组的区别? 2、转录因子是什么?DNA结合域的特点? 3、什么是RNA剪接?什么RNA编辑?生物学意义是什么? 4、什么基因印记?DNA的 ...专业课半岛在线注册资料 本站小编 半岛在线注册 2015-07-19沃森《基因的分子生物学》与朱玉贤《现代分子生物学》要点合并
原核 真核 DNA结构 1.双链,双螺旋(H键,碱基堆积力) 2.碱基互补配对,含T 3.碱基可以外 ...专业课半岛在线注册资料 本站小编 网络资源 2015-07-16中科院612生物化学与分子生物学14年5年真题
2015中国科学院大学612《生化与分子生物》 一、名词解释(5*4) 流动镶嵌模型 糖酵解 严紧控制 酶专一性 小分子干扰RNA 二、单选(1*20) 印象当中好像都没见过 而且考的东西很细 个人认为有点偏 三、判断题(1*30) 好像也没什么太多重复的 四、简答题(4*5) 1、细胞膜结构在代谢中的作用 2、基因敲除与RNA干 ...专业课半岛在线注册资料 本站小编 半岛在线注册 2015-07-152015年华中科技大学《生化与分子生物学》半岛在线注册真题
2015年华中科技大学《生化与分子生物学》半岛在线注册真题(回忆版) 一、写出下列名词对应的中文并解释(每题8分) 1.configurationconformation2.structuraldomainsuper-secondarystructure 3.allostericeffecthyperchromiceffect4.liposomeribosome 5.molecularchaperonemolecularhybridization6.ORFARS 7.transposit ...专业课半岛在线注册资料 本站小编 网络资源 2015-07-14分子生物学重要概念解释
分子生物学重要概念解释 A Abundance (mRNA 丰度):指每个细胞中mRNA 分子的数目。 Abundant mRNA (高丰度mRNA):由少量不同种类mRNA组成,每一种在细胞中出现大量拷贝。 Acceptor splicing site (受体剪切位点):内含子右末端和相邻外显子左末端的边界。 Acentric fragment (无着丝粒片段):(由打断产生的)染色体无着 ...专业课半岛在线注册资料 本站小编 网络资源 2015-07-08武汉大学分子生物学题库
GLOSSARY Abundance of an mRNA is the average number of molecules per cell. Abundant mRNAs consist of a small number of individual species, each present in a large number of copies per cell. Acceptor splicing sitesee right splicing junction. Acentric fragment of a chromosome (generated by ...专业课半岛在线注册资料 本站小编 半岛在线注册 2015-06-21浙江大学2013-2014分子生物学考试半岛在线注册真题回忆
涂鑫韬 2012级生物科学 2013-2014 分子生物学甲 回忆 一、翻译(25选20) Nucleosome Telomerase Deoxyribonucleic Acid Ribosome In vivo Eukaryote Transcrption Reconbination PTGS Epigenetics SnRNP RNAi 沉默复合体 同尾酶 转录后基因沉默 蛋白质组学 功能基因组学 荧光共振能量传递 开放阅读框 ...专业课半岛在线注册资料 本站小编 半岛在线注册 2015-06-06